Abstract

Fracture resistance of prosthesis is an important clinical concern. This property is directly related to transverse strength. Strengthening of prostheses may result from reinforcement with various fiber types. This study evaluated the effect of fiber type on the transverse strength of a commercially available autopolymerizing resin that is used for repairing prosthesis. The resin was reinforced with woven form, chopped form and longitudinal form, and no reinforcement was used. Uniform samples were made from autopolymerizing resin. In total, twenty-four bar-shaped specimens (60 x 10 x 4 mm) were reinforced with glass fibers. Nine specimens were prepared without fiber. A three-point loading test was used to measure transverse strength, maximal deflection, and modulus of elasticity. The Kruskal-Wallis analysis of variance was used to examine differences between the four groups. Although the results of the analysis between these groups showed no statistical significances, the transverse strength, maximal deflection and modulus of elasticity increased more with fiber than without the fiber group. This finding may be of clinical significance. Because the addition of fiber reinforcement enhanced the physical properties of the processed material, specially woven form glass fiber was superior to the other forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call