Abstract
ABSTRACTThis study explores the effects of wheel set gyroscopic action on hunting stability by calculating linear and nonlinear critical speeds. First, a dynamic model for a high-speed vehicle with 23 degrees of freedom is developed by considering wheel set gyroscopic action. The linear and nonlinear critical speeds are calculated by eigenvalue analysis and drawing a bifurcation map, respectively. Two computer programs for linear and nonlinear stability analysis are developed. Second, based on an actual high-speed vehicle in China, the effects of wheel set gyroscopic action on hunting stability are quantitatively investigated using computer simulation. Furthermore, the difference between the effects of gyroscopic moments about the x-axis and z-axis is discussed. The results show that the moment about the x-axis is harmful to hunting stability, but the moment about the z-axis is beneficial to hunting stability. However, the integrated effect of these two moments can enhance the critical speeds and suppress the hunting motion.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have