Abstract

The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer rates, as given by the Nusselt number, is numerically evaluated subject to constant wall heat flux ( H2) and constant wall temperature ( T) thermal boundary conditions. Numerical results are obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid dynamics algorithm with slip velocity and temperature jump boundary conditions applied to the momentum and energy equations, respectively. For the limiting case of parallel plate channels, analytic solutions for the thermally and hydrodynamically fully developed momentum and energy equations are derived, subject to both first- and second-order slip velocity and temperature jump boundary conditions, from which analytic Nusselt number solutions are then obtained. Excellent agreement between the analytical and numerical results verifies the accuracy of the numerical algorithm, which is then employed to obtain three-dimensional rectangular channel and thermally/hydrodynamically developing Nusselt numbers. Nusselt number data are presented as functions of Knudsen number, Brinkman number, Peclet number, momentum and thermal accommodation coefficients, and aspect ratio. Rarefaction and viscous dissipation effects are shown to significantly affect the convective heat transfer rate in the slip flow regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call