Abstract

In the development of oil and gas reservoirs, the transport of miscible fluids in porous rocks is a key issue for oil and gas recovery. The simplified unidirectional flow model is employed to investigate the effects of the viscosity ratio on dispersion in semi-infinite homogenous media. The viscosity is supposed to be unsteady due to changing component concentration over time. In cases of both a viscosity ratio larger and less than 1, the pollutant concentration and flow velocity are computed at different initial conditions and viscosity ratios. The analytical solutions are then developed by introducing new variables and transforming the equation governing advection–diffusion equation in semi-infinite homogeneous media with a continuous source. A comparison of the numerical solution with the analytical solution revealed a similarity over 98%, highlighting the usability of the analytical solution. If the viscosity ratio is larger than 1, flow velocity declines exponentially and concentration attenuates with transporting time. In addition, the timescale plays a significant role and the effects become more prominent in long-term transport. In the case of a viscosity ratio less than 1, both the timescale and viscosity ratio variables have little influence on the changing speed of the concentration profile. This work helps to predict the position and the time required to reach the harmless pollutant concentration when monitoring fracturing fluids transportation into groundwater system and would be especially useful in designing and interpreting laboratory experiments studying the miscible flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.