Abstract

Thorax injuries are common in vehicular accidents, second only to head injuries. Unbelted drivers of vehicles are more likely to suffer thorax injuries from steering wheel contact in frontal impacts. The objective of this study is to investigate the effects the steering wheel tilt angle (0, 20, 40, and 60) impact to the thorax of human body model with respect to thorax deflection and steering wheel rim contact interaction. To understanding of the human thorax sensitivity to steering wheel tilt angle on the force and deflection response using finite element simulations. It was found that the thorax response is sensitive to changes in steering wheel tilt angle. The contact force, Sternal displacement were the key parameters to be observed and compared. The results show that the contact force increased when the steering wheel tilt angle was bigger, the response was quicker. Low steering wheel tilt resulted in greater deformation. The greater the contact force, the deformation of the sternum but reduced when thorax impact the steering wheel, According to ECE R12 steering wheel regulation ,use force regulations to assessment the injury of the thorax is not accurate enough when human thorax impact the steering wheel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call