Abstract
The mechanism by which valproic acid (VPA) induces liver injury remains unknown, but it is hypothesized to involve the generation of toxic metabolites and/or reactive oxygen species. This study's objectives were to determine the effect of VPA on plasma and hepatic levels of the F(2)-isoprostane, 15-F(2t)-IsoP, a marker for oxidative stress, and to investigate the influence of cytochrome P450- (P450-) mediated VPA biotransformation on 15-F(2t)-IsoP levels in rats. In rats treated with VPA (500 mg/kg), plasma 15-F(2t)-IsoP was increased 2.5-fold at t(max) = 0.5 h. Phenobarbital pretreatment (80 mg/kg/d for 4 d) in VPA-treated rats increased plasma and liver levels of free 15-F(2t)-IsoP by 5-fold and 3-fold, respectively, when compared to control groups. This was accompanied by an elevation in plasma and liver levels of P450-mediated VPA metabolites. Pretreatment with SKF-525A (80 mg/kg) or 1-aminobenzotriazole (100 mg/kg), which inhibited P450-mediated VPA metabolism, did not attenuate the increased levels of plasma 15-F(2t)-IsoP in VPA-treated groups. Plasma and hepatic levels of 15-F(2t)-IsoP were further elevated after 14 d of VPA treatment compared to single-dose treatment. Our data indicate that VPA increases plasma and hepatic levels of 15-F(2t)-IsoP and this effect can be enhanced by phenobarbital by a mechanism not involving P450-catalyzed VPA biotransformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.