Abstract

Traumatic spinal cord injury (SCI) often results in severe immune and metabolic disorders, aggravating neurological damage and inhibiting locomotor functional recovery. Microglia, as resident immune cells of the spinal cord, play crucial roles in maintaining neural homeostasis under physiological conditions. However, the precise role of microglia in regulating immune and metabolic functions in SCI is still unclear and is easily confused with that of macrophages. In this study, we pharmacologically depleted microglia to explore the role of microglia after SCI. We found that microglia are beneficial for the recovery of locomotor function. Depleting microglia disrupted glial scar formation, reducing neurogenesis and angiogenesis. Using liquid chromatography tandem mass spectrometry (LC‒MS/MS), we discovered that depleting microglia significantly inhibits lipid metabolism processes such as fatty acid degradation, unsaturated fatty acid biosynthesis, glycophospholipid metabolism, and sphingolipid metabolism, accompanied by the accumulation of multiple organic acids. Subsequent studies demonstrated that microglial depletion increased the inhibition of FASN after SCI. FASN inhibition exacerbated malonyl-CoA accumulation and significantly impeded the activity of mTORC1. Moreover, microglial depletion exacerbated the oxidative stress of neurons. In summary, our results indicate that microglia alleviate neural damage and metabolic disorders after SCI, which is beneficial for achieving optimal neuroprotection and neural repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.