Abstract
DNA was immobilized on highly oriented pyrolytic graphite (HOPG) surfaces modified in octadecylamine (ODA) vapor. ODA molecules, deposited from the vapor phase onto HOPG form a nanostructured surface, which was utilized as a template for DNA adsorption. Peculiarities of double- and single-stranded DNA adsorption on these surfaces were investigated with atomic force microscopy (AFM) both in air, liquid and under different salt conditions. AFM images of DNA molecules immobilized on octadecylamine modified HOPG reveal a segmented shape of biopolymers: it constitutes straight segments with sharp turns at angles 120° or 60° between them, reflecting the symmetry of the underlying pattern. The analysis of DNA conformations on ODA modified HOPG surface has shown that under certain conditions DNA equilibrates on the surface on the scale of the whole molecule. A persistence length estimate of 97 nm was determined for those molecules. Participation of different forces in the ODA pattern driven DNA assembly is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.