Abstract

The influence of undecaprenol on phosphatidylcholine macrovesicular bilayer lipid membranes has been studied by electrophysiological techniques. The current-voltage characteristics, ionic transference numbers, the membrane conductance-temperature relationships and the membrane breakdown voltage were measured. The permeability coefficients for Na+ and Cl- ions, the activation energy of ion migration across the membrane, the membrane hydrophobic thickness and the membrane Young's modulus were determined. Undecaprenol increases membrane conductance, membrane capacitance, membrane ionic permeability and membrane elastic deformability, decreases the activation energy, membrane hydrophobic thickness and membrane electromechanical stability, and does not change membrane selectivity. The formation by undecaprenyl molecules of fluid microdomains modulating membrane hydrophobic thickness is postulated. The data suggest that the behaviour of undecaprenol in membranes is regulated by transmembrane electrical potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.