Abstract

In this work, a series of quaternary AlxInyGa1−x−yN thin films have been successfully achieved using metal organic chemical vapor deposition (MOCVD) method with adjustable trimethylaluminum (TMA) flows. Surface morphology and optical properties of AlxInyGa1−x−yN films have been evaluated. The indium segregation effect on the enhancement of UV luminescence emission in AlxInyGa1-x-yN films with increasing TMA flows was investigated. Our results shed some lights on future optical materials design and LED/LD applications.

Highlights

  • In the past decades, GaN-based ternary alloys have made significant progress in blue, green, and ultraviolet (UV) light emitting diodes (LEDs) and laser diodes (LDs) [1,2,3]

  • We reported AlInGaN/GaN heterostructure grown by metal organic chemical vapor deposition (MOCVD) with varying varying TMA flow rate

  • This was quaternary AlInGaN thin films shifted to the right side with increasing TMA flow rate

Read more

Summary

Introduction

GaN-based ternary alloys have made significant progress in blue, green, and ultraviolet (UV) light emitting diodes (LEDs) and laser diodes (LDs) [1,2,3]. Despite the great progress that has been made, the commercial InGaN/GaN blue LEDs still suffered from some fundamental problems related to the basic material properties. Even though InGaN-based blue LEDs are less sensitive to crystalline quality because of the carrier localization effect induced by alloy composition fluctuation [4], the piezoelectric polarization effect induced by the strain between barrier and well has been considered as one of the reasons of efficiency droop effect [5,6]. In order to solve these problems in ternary InGaN- and AlGaN-based devices, several researchers have recently grown quaternary AlInGaN films [7,8]. AlInGaN attracts much attention as a candidate material for high efficiency

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.