Abstract

AbstractModel predictive control techniques enable operators to balance multiple objectives in large wind farms, but the controller design depends on modeling effects that propagate at different timescales. This paper uses nonlinear model predictive control to investigate how wind farm power variability can be reduced both by varying ratios of three timescales impacting the system control and by inclusion of a power variability minimization measure in the controller objective function. Tests were conducted to assess how different timescale ratios affect the average farm power and power variability. Power variability measures are shown to be sensitive to the ratio of the incident wind period and the turbine time delay, particularly for cases with dominant incident wind frequencies. The average farm power increases in a series of steps as the controller time horizon increases, which corresponds to time horizon values required for wakes disturbances to propagate to downstream turbines. A second set of tests was conducted in which various measures of power variability were incorporated into the controller objective function and shown to yield significant reductions in farm power variability without significant reductions in farm power output. The controller was found to utilize two different approaches for achieving power variability reduction depending on the formulation of the controller objective function. These results have important implications for the design and operation of wind power plants, including the importance of considering the frequency components of wind during turbine siting and the potential to reduce power variability through the use of farm‐level coordinated control. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call