Abstract

The single-layered FePt films with thickness in the range of 5 to 50 nm are deposited directly on Si(100) substrate without underlayer, then post annealed at 700 degrees C by rapid thermal annealing (RTA) technique. As the film thickness of FePt is over 20 nm, the L1(0) FePt(111) preferred orientation is presented and tended to in-plane magnetic anisotropy. However, the L1(0) FePt(001) texture is obtained and exhibited perpendicular magnetic anisotropy as the film thickness is decreased to 10 nm. Its perpendicular coercivity (Hc(perpendicular)), saturation magnetization (Ms) and perpendicular squareness (S(perpendicular)) are 14.8 kOe, 795 emu/cm3 and 0.79, respectively. On the other hand, both the grain size and domain size of FePt film decrease with decreasing the film thickness of FePt. The grain size for 10-nm FePt film is as small as 9.7 nm with domain size of 123 nm, which reveal its significant potential as perpendicular magnetic recording media for ultra high-density recording.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call