Abstract

Single-layered FePt films of 30 nm thick were annealed at temperature between 300 and 800 °C for 1–180 sec by a rapid thermal annealing (RTA) with a high heating rate of 100 °C/sec. It is found that both the grain size and magnetic domain size of the FePt film increase with increasing annealing temperature and annealing time. The FePt films exhibited soft magnetic properties and without domain images were observed by magnetic force microscope (MFM) when the films were post-annealed at below 500 °C for 180 sec. The in-plane coercivity (Hc//) and perpendicular coercivity (Hc⊥) of FePt film increases significantly to 7.5 and 6.5 kOe respectively as annealing temperature increases to 600 °C. When the annealing temperature is increased to 700 °C, they are increased to 11.1 and 9.5 kOe, respectively, and the domain structure inclines to isolated domain. However, further increasing the annealing temperature to 800 °C, the Hc// and Hc⊥ values decrease to 9.8 and 8.9 kOe respectively due to largely increase the grain size of FePt and change the domain structure from isolation to continuity. On the other hand, in order to transform the FePt film from disordered γ phase to the ordered L10 phase, the annealing time of over 3 seconds is necessary when the film was post-annealed at 700 °C with a high heating rate of 100 °C/sec by RTA technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call