Abstract

The effect of the size of radiotherapy photon beams on the absorbed dose to an Al2O3 dosimeter was investigated using the Monte Carlo method. The EGSnrc/DOSRZnrc program code was used to simulate the absorbed dose to the Al2O3 dosimeter, as well as the absorbed dose to water at the corresponding position in the absence of the dosimeter. The incident beams were 60Co γ and 6 MV with a different beam radius ranging from 0.1 cm to 2 cm. Results revealed that the absorbed dose ratio factor depends on the size of the incident photon beam. When the radius of the incident beam is smaller than that of the dosimeter, the absorbed dose ratio factor decreases as the incident beam size increases. The absorbed dose ratio factor reaches its minimum when the radius of the incident beam is almost the same as that of the dosimeter. When the radius of the incident beam is larger than that of the dosimeter, the absorbed dose ratio factor increases as the incident beam size increases. The maximum difference among these absorbed dose ratio factors can be up to 14% in 60Co γ beams and 23% in 6 MV beams. However, when the size of the incident beam is much larger than that of the dosimeter, the effect of the incident beam size on the absorbed dose ratio factor becomes quite small. The maximum discrepancy between the absorbed dose ratio factors and the average value is not more than 1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call