Abstract

Acetylcholine signaling and acetylcholinesterase (AChE) function(s) are pivotal elements in muscle development. The effects of the stimulus-dependent readthrough AChE variant, AChE-R, on leiomyomas and normal myometrium proliferation were assessed in vivo and in vitro. Histological preparations and cell cultures therefrom were obtained during hysterectomies or myomectomies and included both the leiomyoma sample and the adjacent normal uterine muscle as control. In situ hybridization procedures were performed using AChE cRNA probes complementary to the human AChE-R transcript. Antibodies against the AChE-R variant served for immunohistochemical staining. To determine the biological function of AChE-R on the uterine muscle cell cultures, we used a synthetic peptide representing the potentially cleavable morphogenically active C-terminus of AChE-R (ARP). Cell proliferation was assessed using the incorporation of 5'-bromo-2-deoxyuridine (BrDU). Leiomyomas expressed an excess of AChE-R mRNA and the AChE-R protein compared with the normal myometrium. Cell cultures originating from leiomyomas proliferated significantly faster than cultures from the adjacent myometrium (P = 0.027 at BrDU incorporation). Addition of ARP (2-200 nM) caused a dose-dependent decrease in the proliferation of cell cultures from both leiomyomas and the myometrium. The effect on the myometrium reached statistical significance (at 20 and 200 nM, P = 0.02), whereas the variability of the rapidly proliferating primary cultures was high and precluded statistical significance in the leiomyoma cultures. AChE-R is involved in the proliferation of the myometrium. The inhibitory effect of ARP on the myometrium may suggest a future therapeutic role of ARP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call