Abstract

BackgroundControl of the sea louse Caligus rogercresseyi in the Chilean salmonid industry is reliant on chemical treatments. Azamethiphos was introduced in 2013, although other organophosphates were previously used. In 2014, reduced sensitivity to azamethiphos was detected in the Los Lagos Region using bioassays. The main target of organophosphates is the enzyme acetylcholinesterase (AChE). Mutations in the AChE gene are the main cause of organophosphate resistance in arthropods, including other sea lice. In the present study, we aimed to characterize C. rogercresseyi AChE(s) gene(s) and to study the association between AChE variants and azamethiphos resistance in this sea louse species.MethodsSamples of adult male and female C. rogercresseyi were collected in the Los Lagos Region in 2014. Twenty-four hour exposure bioassays with azamethiphos were performed to select sensitive and resistant lice. The full-length cDNA coding sequences encoding for two AChEs in C. rogercresseyi were molecularly characterized. One of the AChE genes was screened by direct sequencing in the azamethiphos-selected lice to search for variants. An additional louse sampling was performed before and after an azamethiphos treatment in the field in 2017 to validate the findings.ResultsThe molecular analysis revealed two putative AChEs in C. rogercresseyi. In silico analysis and 3D modelling of the protein sequences identified both of them as invertebrate AChE type 1; they were named C. rogercresseyi AChE1a and 1b. AChE1a had the characteristics of the main synaptic AChE, while AChE1b lacked some of the important amino acids of a typical AChE. A missense change found in the main synaptic AChE (1a), F318F/V (F290 in Torpedo californica), was associated with survival of C. rogercresseyi at high azamethiphos concentrations (bioassays and field treatment). The amino acid change was located in the acyl pocket of the active-site gorge of the protein.ConclusionsThe present study demonstrates the presence of two types of AChE1 genes in C. rogercresseyi. Although enzymatic assays are needed, AChE1a is most probably the main synaptic AChE. The function of AChE1b is unknown, but evidence points to a scavenger role. The AChE1a F/V318 variant is most probably involved in organophosphate resistance, and can be a good marker for resistance monitoring.

Highlights

  • Control of the sea louse Caligus rogercresseyi in the Chilean salmonid industry is reliant on chemical treatments

  • The amino acid alignment of this C. rogercresseyi putative AChE with 19 AChE sequences from other species (Crustacea, Insecta, Nematoda, Arachnida and Vertebrata) revealed that it has the characteristic features of the main synaptic AChE (Fig. 2 and Additional file 3) [56]

  • The docking analysis performed in the present study showed that the F318V change in C. rogercresseyi AChE1a could modify the binding properties of azamethiphos to the enzyme

Read more

Summary

Introduction

Control of the sea louse Caligus rogercresseyi in the Chilean salmonid industry is reliant on chemical treatments. Mutations in the AChE gene are the main cause of organophosphate resistance in arthropods, including other sea lice. Control of C. rogercresseyi infestations in Chilean fish farms depends mainly on the use of anti-lice chemicals (reviewed in [6, 7]). Pyrethroids became the main anti-lice chemical agents in use until 2013, when treatment failures due to pyrethroid-resistant parasites were reported [12]. In order to control C. rogercresseyi loads in salmonid farms, the organophosphate azamethiphos was introduced in 2013 [7]. Azamethiphos is the most utilized anti-lice chemical in Chilean salmonid farming [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call