Abstract
Using the model of ideally associated solution, the effect of ion association of the ion exchanger sites with main and foreign counterions on the selectivity of ISEs based on liquid ion exchangers has been considered. Equations which describe the potentiometric selectivity coefficient as a function of ion association constants in the membrane phase and of standard free energies of transfer of the determined and foreign ions from water to the membrane are obtained for the following main cases: (a) the determined and foreign ions are single-charged; (b) the determined ion is double-charged and the foreign ion is single-charged. It is shown that in the case of single-charged main and foreign ions, the ratio of the ion association constants has a great effect on the potentiometric selectivity of membranes, only if the ion exchanger sites produce less strong associates with the determined counterion as compared with the foreign one. Otherwise, this effect is insignificant. The selectivity for double-charged ions should increase, other things being equal, as the first constant of association of these ions with the ion exchanger sites increases. The effect of producing ion triplets of the type I 2 R (±) on the selectivity of ISEs is also considered. Experimental data are presented which illustrate the effect of the nature of the ion exchanger on the potentiometric selectivity. Some procedures employing the factor of ion association for increasing the potentiometric selectivity of liquid ion exchange membranes are considered.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have