Abstract

We theoretically investigate the effect of the interdot Coulomb repulsion on Kondo resonances in the series-coupled double quantum dot coupled to two ferromagnetic leads. The Hamiltonian of our system is solved by means of the slave-boson mean-field approximation, and the variation of the density of states, the transmission probability, the occupation number, and the Kondo temperature with the interdot Coulomb repulsion are discussed in the Kondo regime. The density of states is calculated for various interdot Coulomb repulsions with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb repulsion greatly influences the physical property of this system, and relevant underlying physics of this system is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call