Abstract
We have studied a 5-terminal system consisting of three single level quantum dots (QDs) that are in contact with their respective reservoirs. In addition to the intra-dot Coulomb interaction, the electron in the dot affected by an inter-dot Coulomb repulsion from its adjacent QD. We describe this system by an Anderson type model Hamiltonian and apply the Greens function method to study the transport properties of the system. Since we are interested in temperatures higher than the Kondo temperature, we use the equations of motion technique to calculate Green’s functions. Numerical analysis shows that there is a correlation between the transport characteristics of the lower and upper dot and we can change the conductivity of the lower dot only by varying the parameters of the upper dot and vice versa. We demonstrated that the middle dot play the role of the switch on/off of this correlation. Also, we investigated the effect of thermoelectric properties. We found that the inter-dot Coulomb interaction can improve the thermoelectric performance of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.