Abstract

To explore the effect of impeller eccentricity caused by shaft parallel misalignment on the hydrodynamic characteristics of a centrifugal pump, a numerical simulation model based on computational fluid dynamics (CFD) is established. The SST k-ω turbulence model is used to describe the flow field in centrifugal pump. The eccentric motion of the impeller is described by the sliding mesh method (SMM). The results indicates that the nonuniformity and instability of flow field will be aggravated with the increment of impeller eccentricity, which then reduce the pump head and efficiency to a certain extent. The radial force exerted on the impeller is directly proportional to the eccentricity of the impeller. In addition, the impeller eccentricity has a significant impact on the peak rotation frequency of shaft frequency. This study can provide a numerical reference for eccentricity fault diagnosis and vibration control of centrifugal pump impellers to carry out optimal design and vibration reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.