Abstract

The effect of changing the driving frequency on the plasma density and the electron dynamics in a capacitive radio-frequency argon plasma operated at low pressures of a few Pa is investigated by particle-in-cell/Monte-Carlo collision simulations and analytical modeling. In contrast to previous assumptions, the plasma density does not follow a quadratic dependence on the driving frequency in this non-local collisionless regime. Instead, a step-like increase at a distinct driving frequency is observed. Based on an analytical power balance model, in combination with a detailed analysis of the electron kinetics, the density jump is found to be caused by an electron heating mode transition from the classical α-mode into a low-density resonant heating mode characterized by the generation of two energetic electron beams at each electrode per sheath expansion phase. These electron beams propagate through the bulk without collisions and interact with the opposing sheath. In the low-density mode, the second beam is found to hit the opposing sheath during its collapse. Consequently, a large number of energetic electrons is lost at the electrodes resulting in a poor confinement of beam electrons in contrast to the classical α-mode observed at higher driving frequencies. Based on the analytical model this modulated confinement quality and the related modulation of the energy lost per electron lost at the electrodes is demonstrated to cause the step-like change of the plasma density. The effects of a variation of the electrode gap, the neutral gas pressure, the electron sticking and secondary electron emission coefficients of the electrodes on this step-like increase of the plasma density are analyzed based on the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.