Abstract

At very low gas pressures around 1 Pa the electron heating in capacitive radio frequency discharges is dominated by stochastic heating. In this regime electrons are accelerated by the oscillating sheaths, traverse through the plasma bulk and interact with the opposite sheath. Depending on the driving frequency the energetic electrons can enter the sheaths at different phases. These are i) the collapsing phase when the electrons are decelerated, ii) the expanding phase when they are accelerated, and iii) the instant of time, when the sheath width has its minimum and energetic electrons may reach the electrode and be lost. This work analyzes the resulting complex discharge dynamics by means of Particle-In-Cell simulation. It is shown that at certain frequencies the discharge switches abruptly from a low-density mode in a high-density mode. The inverse transition is also abrupt, but shows a significant hysteresis. This phenomenon is explained by the complex interaction of the bulk and the sheath.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.