Abstract
The effect of the degree of deacetylation (DD) of chitosan biopolymer on the noncovalent surface modification of multiwall carbon nanotubes (MWCNTs) is presented. MWCNTs were modified by chitosan having different degree of deacetylation (61%, 71%, 78%, 84%, 90% and 93%) and UV–Visible spectroscopy was used to evaluate their dispersion efficiency as a function of chitosan concentration and degree of deacetylation. Results showed that the dispersion of MWCNTs could be dramatically improved when using chitosan with the lowest degree of deacetylation (61%DD) possibly due to a higher surface coverage of the MWCNTs. Zeta potential measurements were used to confirm that the chitosan surface coverage on the MWCNTs was twice as high when modifying the nanotubes surface with the 61%DD than when using the 93%DD chitosan. These results suggest that the dispersion of MWCNTs with chitosan can be improved when using chitosan having a degree of deacetylation of 61%. These results are of interest in particular for the improved dispersion of MWCNTs in aqueous solutions such as in drug delivery applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have