Abstract
The axisymmetric flow of a thin Newtonian fluid layer subject to centrifugal and Coriolis forces, surface tension and gravity is considered. Employing lubrication theory the mathematical problem is reduced to the solution of a fourth-order nonlinear partial differential equation for the film height, which requires solving numerically. At the moving contact line a precursor film model is adopted. Once the film height is known other quantities, such as fluid velocities and pressure may be easily determined. Of particular interest, is the fact that, within the restrictions of lubrication theory the Coriolis term in the radial velocity equation is of the same order as the inertia terms and is therefore negligible. This means the velocity equations are not fully coupled and, when the flow is axisymmetric, the Coriolis force has no effect on the height of the fluid film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.