Abstract

We present a method for constructing similarity solutions of a fourth-order nonlinear partial differential equation for axisymmetric surface diffusion by extending an inverse method previously used for the second-order one-dimensional nonlinear diffusion equation. After imposing a solution profile, both a feasible surface tension, and a compatible mobility function are deduced simultaneously. Although the profile is not one-to-one, an optimization algorithm is implemented to construct a mobility function that is a function of surface orientation, with no practical difference in mobility between different arms of the many-to-one profile. It is shown that the solution of the linear model well approximates the solution of the nonlinear model, in which the surface tension and mobility are close to constant for a wide range of surface angles, even when nonlinear geometric terms are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.