Abstract

Recently, Baratta and Solomonow J. Biomechanics 24, 109–116 (1991) studied the effect of tendon on muscle-tendon complex behavior in cat tibialis anterior (TA) muscle. This was done by determining the relation between neural stimulation and muscle force in a dynamic isometric experiment, both before and after the removal of the distal tendon. From their results, Baratta and Solomonow concluded that in isometric and concentric contractions at mid-range force levels, tendon behaves as a rigid force conductor. This conclusion is in conflict with literature in which several functions are attributed to the elastic behavior of the series elastic element (SEE), of which tendon is the major part. The present study investigates the expected generalizability of their findings, by simulating the experiments using a straight-forward Hill-type muscle model. First, model predictions are shown to be in line with the experimental results on cat TA: in dynamic isometric experiments at mid-range force levels, the effect of SEE removal is indeed negligible. Second, the effect of SEE removal is predicted to vary largely among muscles. Third, the most important determinants of the effect of SEE removal in dynamic isometric contractions are shown to be maximum fiber shortening velocity and the ratio of SEE slack length to fibre optimum length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.