Abstract

To test the hypothesis that there was no significant (alpha = 0.05) change in viscosity of commercially available root canal sealers with increase in temperature using a high-performance Advanced Rheometric Expansion System (ARES) rheometer. Materials tested were Apexit, Tubliseal EWT, Grossman's, AH Plus and Ketac-endo. Cone-and-plate geometry was used (25-mm diameter, 0.1 radian and gap 0.051 mm). Measurements were carried out for steady-state viscosity at 25 and 37 degrees C in the shear rate range of 0.001-50 s(-1) at standardized relative humidity and within 30 min from the start of mixing. Five samples were taken for each sealer at each temperature. At 25 degrees C all sealers demonstrated shear thinning. At 37 degrees C Grossman's (powder : liquid ratio 2 : 1 and 3 : 1) and Ketac-endo had a rapid rise in viscosity and early set whereas the other sealers were shear thinning. On increasing temperature from 25 degrees C to 37 degrees C, Apexit, Tubliseal and AH Plus had reduced viscosity whereas Grossman's 2 : 1, Grossman's 3 : 1 and Ketac-endo had increased viscosity, which varied with the shear rate. The change in viscosity with change in temperature was significant (P < 0.05) for all sealers except AH Plus. There was a variation in the effect of increasing temperature on each sealer depending on the shear rate. With the exception of AH Plus, a significant (P < 0.05) change in viscosity was found, and the null hypothesis was rejected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.