Abstract
Fluoride is widely used in dentistry for its caries prevention. To reduce dental caries, the optimal fluoride concentration of public water supplies in the United States is 0.7 ppm. However, excessive systemic fluoride consumption can lead to dental/enamel fluorosis. Numerous studies have explored the effects of fluoride on enamel and enamel-forming cells. However, research on systemic fluoride's impact on dentine is limited, particularly the effect of fluoride on the structure of the dentine-pulp complex. Therefore, this study aimed to identify how excessive fluoride affects dentine microstructure using an experimental mouse model. C57BL6/J male mice (6-9 weeks old) were randomized into four groups (Fluoride at 0, 50, 100, or 125 ppm in drinking water) (n = 4/group). Mice were provided water adlibitum for 6 weeks along with fluoride-free food. Thereafter, mandibular incisors were analysed. Enamel phenotypes were evaluated using light microscopy and quantitative light-induced fluorescence (QLF) to measure fluorosis levels. Dentine morphology was evaluated using micro-CT, scanning electron microscopy (SEM), SEM-EDX (energy-dispersive X-ray), microhardness test and histological imaging. Data were analysed using one-way ANOVA with Dunnett's multiple comparisons as a post hoc test and the Kruskal-Wallis test with Dunn's multiple comparisons post hoc test (p < .05). Mice treated with fluoride at 50-125 ppm developed enamel hypoplasia in their erupting incisors and micro-CT imaging revealed that fluoride 125 ppm caused external resorption of the growing incisor. Dentine mineral density, dentine volume decreased compared with the 0 ppm control, while pulp volume increased compared with the 0 ppm control group. SEM showed wider predentine layer and abnormalities in calcified matrix vesicles derived from odontoblasts in fluoride 100 and 125 ppm groups. Vickers microhardness of dentine significantly decreased in the high-dose group. Fluoride-induced dentine hypoplasia in a dose-dependent manner. Histological evaluation showed excessive fluoride 125 ppm induced micro abscess formation and inflammatory cell infiltration. Fluoride induced dentine dysplasia with a dentine microstructure resembling hypophosphatasia. High doses of systemic fluoride can cause dentine dysplasia. Both three-dimensional and microstructural analyses showed the structural, chemical and mechanical changes in the dentine and the mineralized tissue components, along with external resorption and pulp inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.