Abstract

The sooting structure of premixed fuel-rich atmospheric pressure benzene flames burning at the same C/O molar ratio=0.8 was studied in different temperature conditions (Tmax=1720K and 1810K) by changing the cold gas velocity. Compositional profiles of gaseous and condensed phases, measured by probe sampling and chemical analysis, indicated that pyrolytic routes leading to higher soot formation are more favoured in the lower temperature conditions.The structural analysis of condensed phases, including condensed species and soot, has been carried out by using FT-IR and UV–Visible spectroscopy sensitive to the hydrogen bonding and carbon network, respectively.The very low hydrogenated character, as evaluated by FT-IR and elemental analysis, and the high aromatic/graphitic nature of the benzene soot, as shown by a detailed examination of UV–Visible spectral parameters, confirmed the effect of benzene fuel on the internal structure of soot particles already in the early stages of particle inception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.