Abstract

Polystyrene can be substantially toughened by the addition of rubber particles, their role being to act as craze initiators permitting substantial plastic deformation to occur prior to fracture. The internal structure of these particles is variable: typically the smaller (∼1 μm) particles are solid rubber and the larger particles contain sub-inclusions of polystyrene. Thin films of a toughened high-impact polystyrene (HIPS) suitable for optical and transmission electron microscopy (TEM) have been prepared, and the interplay between the internal structure of the particles and the crazes they generate has been examined by TEM. It is found that as crazes form around the solid rubber particles, significant lateral contraction occurs accompanying their elongation in the tensile direction. As this contraction proceeds, decohesion occurs just beneath the particlecraze interface, resulting in the formation of a void. This void will grow under increasing stress, leading to premature failure of the craze. In contrast to this behaviour, occluded particles can accommodate the displacements due to crazing by local fibrillation of the rubber shell which surrounds each sub-inclusion, without the formation of large voids. Consequently, the occluded particles do not act as sites for early craze break-down. These results suggest that the optimum morphology for rubber particles in HIPS will consist of a large number of small PS occlusions, each surrounded by a thin layer of rubber, in which case the size of the inherent flaws introduced during crazing will be minimized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call