Abstract

The formation of fouling deposit from foods and food components is a severe problem in food processing and leads to frequent cleaning. The design of surfaces that resist fouling may decrease the need for cleaning and thus increase efficiency. Atomic force microscopy has been used to measure adhesion forces between stainless steel (SS) and fluoro-coated glass (FCG) microparticles and the model food deposits (i) whey protein (WPC), (ii) sweetened condensed milk, and (iii) caramel. Measurements were performed over a range of processing temperatures between 30 and 90°C and at contact times up to 60s. There is a significant increase in adhesion force of both types of microparticle to WPC at 90°C for all contact times. For confectionary deposits adhesion to SS was similar. Adhesion of confectionary deposits to FCG at 30°C revealed a decrease in adhesion compared to SS; at higher temperatures the adhesion forces were similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.