Abstract

The effect of target strength on the perforation of steel plates is studied. Three structural steels are considered: Weldox 460 E, Weldox 700 E and Weldox 900 E. The effects of strain hardening, strain rate hardening, temperature softening and stress triaxiality on material strength and ductility are determined for these steel alloys by conducting three types of tensile tests: quasi-static tests with smooth and notched specimens, quasi-static tests at elevated temperatures and dynamic tests over a wide range of strain rates. The test data are used to determine material constants for the three different steels in a slightly modified version of the Johnson–Cook constitutive equation and fracture criterion.Using these three steel alloys, perforation tests are carried out on 12mm-thick plates with blunt-, conical- and ogival-nosed projectiles. A compressed gas gun was used to launch projectiles within the velocity range from 150 to 350m/s. The initial and residual velocities of the projectile were measured, while the perforation process was captured using a digital high-speed camera system. Based on the test data the ballistic limit velocity was obtained for the three steels for the different nose shapes. The experimental results indicate that for perforation with blunt projectiles the ballistic limit velocity decreases for increasing strength, while the opposite trend is found in tests with conical and ogival projectiles. The tests on Weldox 700 E and Weldox 900 E targets with conical-nosed projectiles resulted in shattering of the projectile nose tip during penetration.Finally, numerical simulations of some of the experimental tests are carried out using the non-linear finite element code LS-DYNA. It is found that the numerical code is able to describe the physical mechanisms in the perforation events with good accuracy. However, the experimental trend of a decrease in ballistic limit with an increase in target strength for blunt projectiles is not obtained with the numerical models used in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call