Abstract

This paper describes an experimental, analytical and numerical investigation of the penetration and perforation of circular Weldox 460 E steel plates with different thicknesses struck by a blunt projectile at various impact velocities. In the experimental tests, a compressed gas gun was used to launch the sabot mounted projectile at impact velocities well above and just below the ballistic limit of the target plates. Nominal hardness, diameter, length and mass of the projectile were kept constant in all tests. The target plate was clamped in a rigid circular frame, and the thickness was varied between 6 and 30 mm . Measurements were made of the initial and residual velocities, and the ballistic limit velocity and the residual versus impact velocity curve were obtained for each target thickness tested. In addition, a digital high-speed camera system was used to photograph the penetration event. The experimental findings from the tests are presented and discussed, and the results are used to assess some empirical, analytical and numerical models. It is shown that especially the results obtained by the finite element approach are encouraging in terms of predicting the response of the plates examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.