Abstract

The aim of this study was to investigate the interaction of mouse embryonic cortical neurons on P LLA and PLGA substrates, which were partially hydrolysed using potassium hydroxide (KOH). The chemical and topographical properties of the surfaces were characterized, and it was discovered that there was a decrease in the hydrophilicity for the P LLA with increasing concentration of KOH. This was due to chemical modifications to the surfaces of the substrates. Alternatively for the PLGA substrate, only the 0.1 M KOH treated sample had a significantly different hydrophilicity highlighting that surface erosion resulted at higher concentrations. The morphology of the neurons grown on the two substrates were compared to poly Dlysine (positive control). The neurons formed colonies on all of the substrates, but were dramatically reduced in size in the case of the 0.1 M KOH treated substrates. This finding was attributed to the increases in cell spreading and the size of the cells, as they were larger, more elongated and bipolar like those on the positive control. However, there was a significant decrease in the total number of live cells per unit area. Therefore, on these materials when there was increased cellular spreading there was significantly higher cell death. Furthermore, unlike the 0, 0.2, and 0.4 M KOH treated substrates, there was an absence of large bundles of axons that extended between colonies on the 0.1 M sample, instead exhibiting short axons that grew in free space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.