Abstract

Postural balance is influenced by alteration of somatosensory inputs. Sound and vibratory senses, one of several human senses may assist the postural control in a specific impaired situation. The aim of this pilot study was to quantify the effect of sound and vibration on postural balance in healthy young adults. Ten healthy young subjects volunteered to participate in the study. The average age, weight, height, and body mass index were 21.88 ± 0.42 years, 56.21 ± 9.80 kg, 159.75 ± 5.20 cm, and 21.99 ± 3.52 kg/m2. They were assessed for standing postural balance on a force plate over 6 conditions of sound and vibration applications under vision was excluded by using a blindfold. Postural balance variables consisted of planar deviation of Center of Pressure (CoP) and the maximum ranges of CoP in the medio-lateral (ML) and antero-posterior (AP) directions. Two-way ANOVA was used to find the effect and interaction effect of sound and vibration on the postural balance variables. Further analyses of the variables were performed on a basis of each factor. Between sound conditions (no sound and open sound), the variables were analyzed by the paired t-test. In addition, the effect of vibration (no vibration, vibration on quadriceps, and vibration on gastrocnemius) on the variables were analyzed by the one-way repeated measure ANOVA. Results demonstrated no interaction effect and main effect of sound and vibration on the postural balance variables (p > 0.05). In addtion, no significant difference of the postural balance variables between sound conditions (p > 0.05) as well as among vibration conditions (p > 0.05). In conclusion, sound and vibration did not effect to the postural balance during standing in healty young adults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call