Abstract

Liquid Phase Exfoliation (LPE) is a common route to produce two-dimensional MoS2 nanosheets. In this research, MoS2 powder is exfoliated by an ultrasonic probe (sonicator) in a water-ethanol solution. It is reported that MoS2 as a prototype 2D Transition Metal Dichalcogenide, has a band gap that increases with a decreasing number of layers. There are some factors that affect the average band gap energy value and the thickness of the exfoliated flakes. We varied different parameters of the ultrasonic probe like power, pulse percentage and time duration of sonication to investigate the effects on the number of MoS2 layers. Our findings from the UV-Visible spectra, SEM, FESEM and TEM images indicate that the minimum thickness for these samples was acquired at 50% of the input power of the sonicator we used (65 W) and the optimum pulse percentage is 50%. The current study also found that the average amount of band gap increased with an increase in sonication time, and then remained unchanged after 60 minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.