Abstract

During the fabrication of lateral-structured photodetectors based on CH3 NH3 PbI3 film, antisolvents represented by toluene are usually used to accelerate the crystallization of perovskite. Using antisolvent not only leads to the formation of shrinkage holes at the bottom of the perovskite layer, but the toxicity of antisolvents would also hinder the industrial preparation of perovskite devices. An antisolvent-free method is a possible solution to avoid these problems. Here, we report a lateral-structured photodetector based on an antisolvent-free method. The lateral photodetector exhibited a high responsivity of 1.75 A⋅W-1 and specific detectivity (D*) of 3.54 × 1012 Jones. In particular, the results indicated that the solvent had an influence on perovskite film morphology, crystallization, and device performance. The prepared CH3 NH3 PbI3 film presented needle-like crystals and low performance with single precursor solvent N,N-dimethylformamide (DMF). In comparison, appropriate mixing of dimethyl sulfoxide (DMSO) could improve the morphology, crystallization, and performance of the film. In addition, the solvent volume ratio of the precursor had a profound effect on the performance of the as-prepared photodetectors. At a DMSO:DMF volume ratio of 5:5, the as-prepared film had massive perovskite crystals and fewer defects, resulting in optimal device performance, which can be explained by Urbach energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.