Abstract

Shot peening is currently utilized in coal-fired power plant components to mitigate scale exfoliation issues from steamside oxidation of austenitic stainless steel superheater and reheater tubing. To focus on commercially available material, this study exposed quarter-ring specimens cut from two different commercially shot peened type 304H tubes and exposed to 1 bar steam for up to 15,000 h at 550°, 600°, 625°, and 650 °C. Specimens were removed at increments to characterize the oxide thickness and microstructure. The shot peened inner surface generally retained a thin, protective Cr-rich scale with occasional Fe-rich oxide nodules at 550–625 °C. The increased oxidation resistance from shot peening began to degrade at 650 °C after as little as 5,000 h. Cut and polished faces of these specimens formed thick, Fe-rich oxides similar to polished 304H coupons. Surprisingly, the mechanically machined outer surface of the tube specimens performed similarly to the shot peened inner diameter, suggesting it had sufficient cold work to achieve a similar benefit. Electron backscatter diffraction and Vickers-hardness measurements were used to characterize post-exposure changes in underlying microstructure and mechanical properties, respectively, imparted by shot peening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.