Abstract
Stem cell therapy is developing as a valuable therapeutic trend for heart diseases. Most recent studies are aimed to find the most appropriate types of stem cells for the treatment of myocardial infarction (MI). The animal models have shown that bone marrow-derived mesenchymal stem cells (BMSCs) are a possible, safe, and efficient type of stem cell used in MI. The previous study demonstrated that 5-Azacytidine (5-Aza) could promote cardiac differentiation in stem cells. This study used 5-Aza to induce cardiomyocyte differentiation in BMSCs both in static and microfluidic cell culture systems. For this purpose, we investigated the differentiation by using real-time PCR and Immunocytochemistry (ICC) Analysis. Our results showed that 5-Aza could cause to express cardiac markers in BMSCs as indicated by real-time PCR and immunocytochemistry (ICC). However, BMSCs are exposed to both 5-Aza and shear stress, and their synergistic effects could significantly induce cardiac gene expressions in BMSCs. This level of gene expression was observed neither in 5-Aza nor in shear stress groups only. These results demonstrate that when BMSCs expose to 5-Aza as well as mechanical cues such as shear stress, the cardiac gene expression can be increased dramatically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.