Abstract

Structural elements subjected to impact loads have a different response than those subjected to static loads. This research studied the effect of using shear reinforcement to reduce the local damage occurred when an impact load applied on a prestressed concrete beam. An accurate finite element model was provided for the analysis using the advanced volumetric finite element modeling program (ABAQUS). The concrete material was defined using the built in concrete damage plasticity model (CDP), that considers the nonlinear behavior of concrete when subjected to dynamic loading. All material properties were modified using the dynamic increase factor (DIF) to consider the effect of impact loading. It was realized that the failure was concentrated in the impact zone. However, using shear reinforcement reduced the permanent damage occurred due to impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.