Abstract
Nickel-titanium (NiTi) shape memory alloys are widely used for medical components, as they can accommodate large strains in their superelastic state. In order to further improve the mechanical properties of NiTi, grain refinement by severe plastic deformation is applied to generate an ultrafine-grained microstructure with increased strength. In this work comprehensive fracture and fatigue crack growth experiments were performed on ultrafine-grained NiTi to assess its damage tolerance, which is essential for the safe use of this material in medical applications. It was found, that equal channel angular pressing of NiTi for 8 passes route BC increases the transformation stress by a factor of 1.5 and the yield stress of the martensite by a factor of 2.6, without significantly deteriorating its fracture and fatigue crack growth behavior. The fatigue crack growth behavior at high mean stresses is even improved, with lower fatigue crack growth rates and higher threshold stress intensity factor ranges, however, beneficial contributions from crack closure are slightly reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.