Abstract

In this study, compact materials were fabricated by selective laser melting (SLM) method using copper-silver core-shell particles obtained by electroless coating method. The effect of SLM parameters such as laser power, scanning speed and hatch spacing on the important properties such as microstructure, density and electrical conductivity of compacts produced from core-shell particles was investigated. This study significantly contributes to the fact that the parameters used in the fabrication of copper-silver-based materials with the SLM method directly affect the properties of the compacts. The results showed that the silver shell thickness obtained on the core of copper powders by electroless plating method varied between 1 and 3 μm and was distributed homogeneously. It was also found that the highest apparent density value among all samples was obtained above about 99% from the sample where 100 W power, 250 mm/s scanning speed and 45% hatch spacing values were used. In addition the highest electrical conductivity value was obtained for these conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.