Abstract
The effect of bias on control simulation is a significant issue for climate change modeling studies. We investigated the effect of the sea surface temperature (SST) bias in present day (0 ka) Atmosphere–Ocean Coupled General Circulation Model (AOGCM) simulations on simulations of the mid-Holocene (6 ka, i.e., 6,000 years before present) Asian monsoon enhancement. Because changes in ocean heat transport have a negligible effect on the 6 ka Asian monsoon (Ohgaito and Abe-Ouchi in Clim Dyn 29(1):39–50, 2007), we used an Atmospheric General Circulation Model (AGCM) rather than an AOGCM. Simulations using the AGCM coupled to a mixed layer ocean model (MLM) were conducted for 0 and for 6 ka with different ocean heat transport estimated from the climatological SST of the 0 ka simulations from nine Paleoclimate Modeling Intercomparison Project (PMIP) phase 2 (PMIP2) AOGCMs (henceforth “MA” is used to refer to experiments using the AGCM coupled with the MLM). No correlation between MA and the corresponding PMIP2 was seen in the 0 ka precipitation and it was not very strong for the 6 ka precipitation enhancement. Thus, the influences from the different AGCMs play a substantial role on the 0 ka precipitation and the 6 ka precipitation enhancement. The sensitivity experiments indicated that it was the pattern of the 0 ka SST bias which played a dominant role in the 0 ka precipitation and the 6 ka precipitation enhancement, not the difference in the mean value of the SST bias. The distributions of the 6 ka precipitation enhancements for the nine PMIP2 AOGCMs and nine MA experiments were compared. These showed that the effects of SST bias on 6 ka precipitation enhancement among the AOGCMs were not negligible. The effects of biases among the AGCMs were not negligible either, but of comparable size. That is, improvements in both the SST bias and the AGCM contribute to simulate better 6 ka monsoon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.