Abstract

Objective A zinc finger type transcription factor, AJ18, is thought to be a negative regulator of osteoblast differentiation, but its expression mechanism is not fully understood. Retinoic acid (RA) is a metabolite of vitamin A and involves the proliferation and differentiation in a variety of cells. To verify the effect of RA on osteoblast differentiation, AJ18 expression level was examined using a rat clonal preosteoblastic cell line, ROB-C20 (C20). Design Confluent C20 cells were treated with or without RA (10 −6 M) for several days. Northern, real time RT-PCR and Western blotting analyses were performed to examine AJ18 expression pattern in gene and protein levels. To identify the active promoter sequence of AJ18 gene, luciferase assay was designed. Furthermore, the effect of overexpressed AJ18 in C20 cells on alkaline phosphatase (ALP) mRNA expression and its activity was compared with that of RA-treated cells. Results RA increased the expression of AJ18 mRNA from 2 to 13 days as well as its protein production. However, no significant changes of Runx2 mRNA expression and undetectable osterix mRNA expression were observed in C20 cells treated with or without RA. Luciferase assay showed increases in promoter activities in some constructs of 5′-flanking region of AJ18 gene in RA-treated C20 cells. On the other hand, RA decreases enzymatic activity and mRNA expression level of ALP, but mRNA expression levels of bone sialoprotein and osteocalcin were not altered. Interestingly, reduced ALP activity and its mRNA expression level were detected in exogenous AJ18-overexpressing C20 cells. Conclusions This study supports the hypothesis that RA may restrict to the differentiation of C20 cells into mature osteoblasts via inductive AJ18 expression with activation of multiple signal pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.