Abstract

BackgroundMicrocirculation plays a vital role in the development of multiple organ failure in severe sepsis. The effects of red blood cell (RBC) transfusions on these tissue oxygenation and microcirculation variables in early severe sepsis are not well defined.MethodsThis is a prospective, observational study of patients with severe sepsis requiring RBC transfusions of one to two units of non-leukoreduced RBCs for a hemoglobin < 7.0, or for a hemoglobin between 7.0 and 9.0 with lactic acidosis or central venous oxygen saturation < 70%. This study took place in a 54-bed, medical-surgical intensive care unit of a university-affiliated hospital. Thenar tissue oxygen saturation was measured by using a tissue spectrometer on 21 patients, and a vaso-occlusive test was performed before and 1 hour after transfusion. The sublingual microcirculation was assessed with a Sidestream Dark Field device concomitantly on 11 of them.ResultsRBC transfusion resulted in increase in hemoglobin (7.23 (± 0.87) to 8.75 (± 1.06) g/dl; p < 0.001). RBC transfusion did not globally affect near-infrared spectrometry (NIRS)-derived variables. However, percent change in muscle oxygen consumption was negatively correlated with baseline (r = - 0.679, p = 0.001). There was no statistically significant correlation between percent change in vascular reactivity and baseline (p = 0.275). There was a positive correlation between percent change in oxygen consumption and percent change in vascular reactivity (r = 0.442, p = 0.045). In the 11 patients, RBC transfusion did not globally affect NIRS-derived variables or SDF-derived variables. There was no statistically significant correlation between percent change in small vessel perfusion and baseline perfusion (r = -0.474, p = 0.141), between percent change in small vessel flow and baseline flow (r = -0.418, p = 0.201), or between percent change in small vessel perfusion and percent change in small vessel flow (r = 0.435, p = 0.182).ConclusionsIn a small sample population, muscle tissue oxygen consumption, microvascular reactivity and sublingual microcirculation were globally unaltered by RBC transfusion in severe septic patients. However, muscle oxygen consumption improved in patients with low baseline and deteriorated in patients with preserved baseline. Future research with larger samples is needed to further examine the association between RBC transfusion and outcomes of patients resuscitated early in severe sepsis, with an emphasis on elucidating the potential contribution of microvascular factors.

Highlights

  • In the United States, approximately 750,000 cases of sepsis occur each year, of which at least 225,000 are fatal

  • The primary objective of this study was to evaluate the effect of red blood cell (RBC) transfusion in severe septic patients on sublingual microvascular perfusion and flow using sidestream dark field (SDF) and on muscle tissue oxygenation, oxygen consumption, and microvascular reactivity using near-infrared spectrometry (NIRS)

  • Percent change in NIRVO2 was negatively correlated with baseline NIRVO2 (r = -0.679, p = 0.001; Figure 2A)

Read more

Summary

Introduction

In the United States, approximately 750,000 cases of sepsis occur each year, of which at least 225,000 are fatal. The cost of management of one septic patient has been estimated at $50,000, amounting to annual costs of approximately $17 billion. Sepsis is the second-leading cause of death in noncoronary intensive care units (ICUs) and the tenth leading cause of death overall. Organ failure occurs in approximately one third of patients with sepsis and severe sepsis is associated with an estimated mortality rate of 30-50%. Seventy percent of patients with three or more organ failures (classified as severe sepsis or septic shock) die [1,2,3,4,5,6,7,8]. Microcirculation plays a vital role in the development of multiple organ failure in severe sepsis. The effects of red blood cell (RBC) transfusions on these tissue oxygenation and microcirculation variables in early severe sepsis are not well defined

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call