Abstract

IntroductionThe aim of this study was to evaluate the effects of red blood cell (RBC) transfusions on muscle tissue oxygenation, oxygen metabolism and microvascular reactivity in critically ill patients using near-infrared spectroscopy (NIRS) technology.MethodsThis prospective, observational study included 44 consecutive patients hospitalized in the 31-bed, medical-surgical intensive care unit of a university hospital with anemia requiring red blood cell transfusion. Thenar tissue oxygen saturation (StO2) and muscle tissue hemoglobin index (THI) were measured using a tissue spectrometer (InSpectra™ Model 325; Hutchinson Technology Inc., Hutchinson, MN, USA). A vaso-occlusive test was performed before and 1 hour after RBC transfusion by rapid inflation of a pneumatic cuff around the upper arm. The following variables were recorded: THI, the StO2 desaturation slope during the occlusion (%/minute) and the StO2 upslope of the reperfusion phase following the ischemic period (%/second). Muscle oxygen consumption (NIR VO2; arbitrary units) was calculated as the product of the inverse StO2 desaturation slope and the mean THI over the first minute of arterial occlusion.ResultsBlood transfusion resulted in increases in hemoglobin (from 7.1 (6.7 to 7.7) to 8.4 (7.1 to 9) g/dl; P < 0.01) and in oxygen delivery (from 306 (259 to 337) to 356 (332 to 422) ml/minute/m2; P < 0.001). However, systemic VO2 was unchanged. RBC transfusion did not globally affect NIRS-derived variables, but there was considerable interindividual variation. Changes in the StO2 upslope of the reperfusion phase after transfusion were negatively correlated with baseline StO2 upslope of the reperfusion phase (r2 = 0.42; P < 0.0001). Changes in NIR VO2 after transfusion were also negatively correlated with baseline NIR VO2 (r2 = 0.48; P = 0.0015). There were no correlations between RBC storage time and changes in StO2 slope or NIR VO2.ConclusionsMuscle tissue oxygenation, oxygen consumption and microvascular reactivity are globally unaltered by RBC transfusion in critically ill patients. However, muscle oxygen consumption and microvascular reactivity can improve following transfusion in patients with alterations of these variables at baseline.

Highlights

  • The aim of this study was to evaluate the effects of red blood cell (RBC) transfusions on muscle tissue oxygenation, oxygen metabolism and microvascular reactivity in critically ill patients using near-infrared spectroscopy (NIRS) technology

  • Muscle tissue oxygenation, oxygen consumption and microvascular reactivity are globally unaltered by RBC transfusion in critically ill patients

  • Studies conducted in Europe and the United States have reported that RBC transfusions were administered to approximately 40% of all patients [1,2], with an average of almost 5 units of RBCs per patient; this has changed little over the past decade [3]

Read more

Summary

Introduction

The aim of this study was to evaluate the effects of red blood cell (RBC) transfusions on muscle tissue oxygenation, oxygen metabolism and microvascular reactivity in critically ill patients using near-infrared spectroscopy (NIRS) technology. Ill patients often receive red blood cell (RBC) transfusions. It is even difficult to say whether RBC transfusion really improves tissue oxygenation. Clinical studies on the efficacy of RBC transfusion have used different endpoints for tissue oxygenation, including systemic VO2, blood lactate, and base excess levels [5,6]. A few studies have demonstrated an improvement in tissue oxygenation after RBC transfusion associated with an increase in oxygen delivery (DO2); other studies have not [7,8]. More general and indirect survival measures, such as mortality, morbidity, or length of hospital stay [1,9,10,11], are prone to confounding and are difficult to influence [9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call