Abstract

The mounting bolt hole of aircraft engine exhaust cone was found cracked in the weld area. Exhaust cone material is �. /�� titanium (Ti-6Al-4V) alloy. The cracked section will be repaired by welding to restore its function. The purpose of this research is to evaluate the effect of post weld heat treatment (PWHT) on ductility, grain size, and shear strength of Ti-6Al-4V plates (0.063 in. thickness) welded by gas tungsten arc welding (GTAW) using commercial purity (CP) titanium wire electrode (AMS 4951H). The weld quality was evaluated by non-destructive and destructive tests, using the acceptance criteria of AWS D17.1 and AWS B2.1 as references. The effect of PWHT was examined by preparing two weld specimens: with and without PWHT at 620 o C. Non-destructive inspection by dye penetrant and xray radiography tests revealed that the weld in these two specimens is free from surface and internal defects. Weld specimen without PWHT is brittle and failed during fillet break test, whereas PWHT specimen is ductile and pass the same test. Metallography observation was conducted to measured grain size of base metal and heat affected zone (HAZ). The average grain size of PWHT specimen is 18.40 o m on base metal and 36.80 o m on HAZ, and for nonPWHT specimen is 26.85 o m on base metal and 52.10 o m on HAZ. Using Hall-Petch approach, the yield strength is calculated about 920 MPa on the base metal of PWHT specimen, which result in the shear strength of about 531 MPa. Under static loading, the shear stress on the outer surface of exhaust cone due to exhaust gas is about 38 MPa, which is much lower than material shear strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.