Abstract

ABSTRACTA systematic investigation of four processing routes was implemented so as to evaluate the thermal and mechanical properties of nanosilica (NS) reinforced poly(urethane‐isocyanurate) nanocomposites (NC). The NS dispersion in the Polmix and the Isomix routes was performed in the polyol and the isocyanate precursor, respectively. The Isopol and the Solvmix routes consisted on the dispersion of the filler after the mixing of the precursors and with the aid of solvents, respectively. The NS dispersion, fractography (SEM, TEM), flexural and tensile mechanical properties, thermogravimetric analysis and FTIR analysis of NCs was performed as a function of processing route, isocyanate index, and NS concentration. Each route produced a NC with distinct properties, which were correlated to the NS agglomeration degree and how the NS affected the thermal transitions of the HS and the relative ratio of urethane and isocyanurate chemical groups. For example, the NC prepared with the Polmix route had substantial improvements of σt and εt of around +40 and +52%, respectively and an improved thermal resistance of the Hard Segments. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42750.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.