Abstract

Although the 2 H/1 H ratio of the carbon-bound hydrogens (C-Hs) in α-cellulose extracted from higher plants has long been used successfully for climate, environmental and metabolic studies, the assumption that bleaching with acidified NaClO2 to remove lignin before pure α-cellulose can be obtained does not alter the 2 H/1 H ratio of α-cellulose C-Hs has nonetheless not been tested. For reliable application of the 2 H/1 H ratio of α-cellulose C-H, we processed plant materials representing different phytochemistries and photosynthetic carbon assimilation modes in isotopically contrasting bleaching media (with an isotopic difference of 273 mUr). All the isotope ratios were measured by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS). Our results show that H from the bleaching medium does appear in the final pure α-cellulose product, although the isotopic alteration to the C-H in α-cellulose due to the incorporation of processing H from the medium is small if isotopically "natural" water is used to prepare the processing medium. However, under prolonged bleaching such an isotope effect can be significant, implying that standardizing the bleaching process is necessary for reliable 2 H/1 H measurement. The currently adopted method for removing lignin for α-cellulose extraction from higher plant materials with acidified NaClO2 bleaching is considered acceptable in terms of preserving the isotopic fidelity if isotopically "natural" water is used to prepare the bleaching solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.