Abstract

Helium (He) and energy shortages have caused price increases and reduced their availability. Using three combustion reactions per acquisition of carbon and nitrogen isotope ratios saves 50% He and energy during the elemental analysis/isotope ratio mass spectrometry (EA/IRMS). This approach needs to be tested for sulfur isotope (δ34S) analyses. A new method to measure δ34S in three sequential combustion reactions within one EA/IRMS acquisition was developed. The same material or blank samples could be used in the three reactions. After SO2 was used, a N2 purging method was employed to prolong the lifetime of the valves in the EA/IRMS interface. The 3×EA/IRMS was applied to measure δ34S in precious samples, such as Ag2S from acid-volatile and chromium-reducible sulfur extracted with a multiple-port setup. The 3×EA/IRMS-δ34S method was validated with replicate analyses of international reference materials and laboratory standards with a wide range of mineralogical compositions and δ34S values. The method provided a strategic advantage for the δ34S measurements of small precious samples (measured between blanks). The accuracy and precision of the 3×EA/IRMS values effectively matched those obtained using conventional EA/IRMS, with good agreement between the mean ± SD values and the recommended values with their uncertainties. Compared with the conventional EA/IRMS, the proposed method provides accurate and precise δ34S measurements of the sulfate and sulfide samples while saving approximately 50% of He, energy, SO2 reference gas, O2, analysis time, and cost. Notably, 3×EA/IRMS can provide up to three δ34S values unaffected by memory effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call